VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (I.T. : CBCS) III-Semester Main Examinations, December-2017

Discrete Mathematics

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 $\times 2=20$ Marks)

1. Which of the following are Propositions? What are the truth values of those that are propositions?
i) Answer this question.
ii) $5+7=10$.
2. Define the principle of Strong Induction.
3. What is the quotient and remainder when -11 is divided by 3 ?
4. Use Euclidean algorithm to find GCD $(123,277)$.
5. State Vandermonde's Identity.
6. How many different functions are there from a set with 10 elements to a set with 5 elements?
7. List all the ordered pairs in the relation $R=\{(a, b) / a$ divides $b\}$ on the set $\{1,2,3,4,5,6\}$.
8. Represent the relation $\mathrm{R}=\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2)$, $(4,3)\}$ on $\{1,2,3,4\}$ with a matrix.
9. How many edges does a graph have if its degree sequence is $4,3,3,2,2$?
10. Define Strongly connected graph and Weakly connected graph.

$$
\text { Part }-B(5 \times 10=50 \text { Marks })
$$

11. a) Show that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even using
ii) Proof by Contrapositive.
b) Prove that $3+3.5+3.5^{2}+\ldots+3.5^{n}=3\left(5^{n+1}-1\right) / 4$, where n is a non-negative integer.
12. a) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then prove that $a+c \equiv(b+d)(\bmod m)$ and $a c \equiv b d(\bmod m)$.
b) State and prove Fermat's Little Theorem.
13. a) The English alphabet contains 21 consonants and 5 vowels. How many strings of six lowercase letters of the English alphabet contains i) Exactly one vowel ii) At least one vowel.
b) State and prove the Generalized Pigeon-hole principle.
14. a) Draw the Hasse diagram for inclusion relation on the set $P(S)$, where $S=\{a, b, c, d\}$.

Also determine the greatest and least elements, if any, exist. 5
b) If R is a relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$ then prove that R is an equivalence relation.
15. a) State and prove Euler's formula on planar graphs.
b) Determine whether the given graph is Planar. If so, draw it so that no edges cross.

16. a) Express these statements using quantifiers, predicates and logical connectives if necessary. [
i) Every computer science student needs a course in Discrete Mathematics.
ii) There is a student in this class who can speak Hindi.
iii)All users on the campus network can access all websites whose url has a .edu extension.
b) Define a Linear Congruence and solve the Linear Congruence $4 x \equiv 5(\bmod 9)$.
17. Answer any two of the following:
a) Consider the Non Homogeneous linear recurrence relation $a_{n}=3 a_{n-1}+2^{n}$. Show that $a_{n}=-2^{n+1}$ is a solution of this recurrence relation.
b) Define i) comparable elements of a poset with an example.
ii) Is there a greatest element and a least element in the poset $\left(Z^{+}, /\right)$?
c) $i)$ Find the Chromatic number of the given Graph?

ii) Prove that an undirected graph has an even number of vertices of odd degree.

